STAT ## вибрационные мельинцы и их испытания Бандираты техн. няук САНОЖИНКОВ М. Я. и КУГЕЛЬ Р. В. В ибрационные мельницы являются эффективным типом манно для тонкого измельчения и найдут широкое применение в народном хозяйстве зля получения самых разнообразных тонкодиспереных материалов Вябрационные мельницы эффективно применьют ся при производстве строительных материалов и Как показали исследования, произведен ные СКБ Министерства промышленности строите в ных материалов СССР и другими организациями, тонкое измельчение расширяет возможно, ти получения высококачественных вяжущих из местных строи тельных материалов (извесли, песка, литтков очажных остатков и др.), а также повытыет проч ность строительных детален Так, и пример топкое измельчение песка, используемого для сизикатина автоклавных дегалей, повышает их прочность в не сколько раз Тонконзмельченные песок и известь могут заменить цемент при производстве инфера, домол на вибромельницах цемента, применяемого для изготовления железобетонных изделии повы шает его активность и ускоряет сроки твердення И Т. Д Рис 1 Схема устройства вибрационной мельницы а — модель Муо 15 го мотель Маоз 3 го корпус 2 обостор подоская и безопери за реама 3 го корпус 3 обостор подоская и безопери за реама 3 го корпус за реама за реама соединительного из реама за реама соединительного из реама за Общий вид и устройство вибрационной мельницы типа M200 показаны на рис 1 и 2 Основными узла ми мельницы являются цилипарический корпус I вибратор 2, упругая пружинная полвеска 3 опорная рама 4, электродвигатель 5 и упругая муфта 6, соединяющая вал вибратора с электро цвигателем Вибратор состоит из двух напресованных одиа на другую труб, между которыми циркулирует вода, охлаждающая подшипники, а также смонтированного в подшипниках лебалансного вала, цельного у вибрационной мельницы M200 1,5 и разрезного у вибрационной мельницы M200-3 При вращении де баланеного нала возинкают колебания корпуса мельинцы по замкнутой траектории с частотой, со ответствующей числу оборотов, т. е около 25 гц у вибрационной мельинцы М200-1,5 и 50 гц у мельины М200-3. Более новые образцы вибромелынцы на четырех пружниях показаны на рис. 3. В этих образцах об петенная рама имеет П-образную форму, благодаря ему открывается свободный доступ к любому месту корпуса, а разгрузка материала из мельницы становится более удобной Для получения таких тонкодисперсных материаной, которые требуются в сравнительно небольших количествах, создана вибрационная мельница М10 емьостью 10 дм3, ноказанная на рис. 4. Технические харык сристики вибрационных мельниц, разработанные СКБ МПСМ СССР, приведены в табл. 1 Принзиодительность вибрационных мельниц коисблется в широких пределах в зависимости от режима измельчения, свойств измельчаемого материаы и топкости помола Вибрационные мельницы можно применять как для сухого, так и для мокрого помола. При сухом помоле наиболее эффективна схема комплексной вибропомольной установки, показанная на рис. 5. Изменьчаемые материалы загружаются в сдвоенный приемный бункер / и дозаторами 2 подаются в заданных соотношениях в мельницу 3 с внутренней перегородкой. Вентилятор высокого давления 4 через Рис 2 Общий вид вибрационный мельинцы М200 Рис. 3. Вибрационная мельниц г типа. M200 по четырех пружинах. (одно ограждение сиято). трубопровод 7 нагнетает воздух вистры мельница едувая частично изметьченный материал, которын выпосится на поверхность мелюних тет пра их ипр куляции вокруг корпуса вибратора. Далес поток воздуха с содержащимся в нем материалом проходит классификатор 5, где тонкие частицы отдетя ются и затем осаждаются в циклопе 6, грубые частищы из классификатора 5 во працыю от ил тетот в мельницу Регулировка скорости в истем про и водительность такой установки с мельници М200-1,5 при работе на сухом колрисков и исстимента и впесткою и исстимента от смесях составляет 225—300 кс протукта с у те пов поверхностью 4 000-4 500 см²/г по Говарову при остатке на сите 10 000 ота/см² не более 2 5% На рис 6 показан тругой вариант комплексион виброномольной установки, отличающинся тем, что в этом случае частично измельченный продукт не стувается с поверхности шаров, а выбрасывается и с в наниы в сребопровод, т се и сематывается по током веседула, и тенны в классификатор. В ряде случася, илиример, при домоле цемента, В риде случаси, плеример, при томо је цемента, пелеообразное применять непрерывный процесс работы «на проход» без водушной классификации. При этом измельнаемый материал подается в дозируемых количествах в верхний крайний люк и, пройти чере с установку, изхолит в виде готового продукта чере с инжений люк в противоположном ее конце Таблица 1 Техинческие зарактеристики вибранорические зарактеристики | ffannelighanne nora (art acti | Мозели | | | |--|------------------------|------------------------------|---------------------------------| | | M10 | M200-1 3 | M200-3 | | Объем корпуса в дм ^у
Устота колебания в 1 мил .
Амиянтуда колебаний в мм .
Дебалансный момент в касм | 10
3 000
3
13 | 200
1 500
3
140—175 | 200
3 0 00
2
65 | | В с мелюниях тел в из-
стальных шаров или ро-
чиков.
фэрфоровых шаров
Моному в этехтролинателя | 36
11 | 740
240 | 740
240 | | и ват | 4,5 | 14 | 20 | | тел) и кг | 185 | 700 | 720 | | 1100a | 1 070
450 | 1 980
980 | 1 980
980 | | нысота (с теревянной
подставкой) | 770 | 1 360 | 1 360 | Образны мельниц подвергались длительным испынациям, в процессе которых исследовались следующие параметры основные конструктивно-технологические показатели (эмплитуда колебаний, потреб- Рис. 1. Впортиновным мельнаца М10 габораторного типа. 1 - корпус. 2. теба запелово со так и комута къмпления соопуса в кото ряж он вобъет описативносто с объетном милета, то строй ещие упругая состоятелната с фта. Состоятелна и прожина зиру сой опоры у розд. 8 основние в полачени интвогомалажалия Рис 5 Схеми комплексной вибропомольной установки № 3 СКБ 7 - прис п.ай бункер (А и Б), 2 - дозатор с меда ниче веем приотдем; 3 - выбрационняя мельняця Удор, 7 - пентнаятор высокого давления; 3 - водауми и притеги ий классификатор; 6 - циклон с яромежу гочные 6 пксиом и магажий; 7 - система трубеври водов ляемая мощность, циркуляция ме пощих тел, все элементов конструкция и г и), техно югическая эффективность, т с способность выбращионной мельницы измельнать развичих условиях, теловечность, и обство эксплуатация, теловая напряженность, а так же ремоноснособность конструкции В настоящей статье излагаются некоторые данные по нарболее сложным разделам испытаций мель инц.-- долговечность и технологическая эффектив HOCTI. В этличне от других машии, у которых напряжен ность делалей обычно может быть синжена путем уве имения их размеров, возможность увеличения сечений и веса дегалей вибрационных мельниц огра инчена Эго происходит потому что возрастание колеблющихся масс требует заграты дополнительной энергии на припод и снижает эффективность машины Анализируя возможные причины разрушения основных узлов и деталей вибрационных мельниц, ста тоги металла в корпусах мельницы и вибратор с в потивнивых вибратора и пружинах упругов и сельно Источником усталостного разрушения являются обычно наиболее слабые места материа (а, статис) в чески распределенные по его объему, либо сена концентрации напряжений, обусловленные формон детали, резкими переходами сечений, поврежае 🦠 ми поверхности, технологическими и другими до утами. Известно, что напряжения в детали даж определенные опытным путем, могут не согласовы наться е результатами, полученными при ее испыта или на усталость, так как исследования напряжении характеризуют весь объем металла, а испытания на усталось наиболее слабое место в материале и KOHCTDVKHHH Зависимость между папряжением в детали и сроком ее службы до разрушения от усталости в общем виде выражается урависнием $$N = \binom{A}{a}^m$$ гле А число циклов до разрушения, з напряжение, А - постоянный коэффициент, т - показатель степени, характеризующий угот наклона кривой усталости в логарифми ческих координатах. Веледствие степенной зависимости между напряжением и долговечностью небольному изменению наприжении передко соответствует весьма значительстве и менение долговечности. Папример, как ви цьо из приве ценного на рис. 7 графика усталости кланалных пружим, уменьшение напряжения на 4% учельнымает число циклов до разрушения в 10 раз По указанням причинам испытаниям на усталость исламетть сопутствует весьма значительное рассен вашле результатов. Для количественной характерисики этого явления на рис. 8 и 9 приведены типичиле криљае рассенвания показателей долговечности не которых дета јен, применяемых в вибращбонных мельпитах, - шариковых и роликовых подиниников, рессор, болтов. Как видно из этих рисунков, ${\rm Pac} = 6$ Схема комплексион виброномольной установки $N_{\rm P} = 2$ СКБ операционные мельного М 900, 2 классификатор 3 пиклов 3 оптизитор соружения) бункер 5 донятор 7 влеватор А бункер влеватора изменение долговечности деталей в несколько разявляется обычным, что же касается пределов рассенвания, то они еще более значительны. При стендовых испытаниях высококачественных шариковых подшинников о цюй партии в количестве около 30 шт срок службы наиболее долговечного подшинника, например, отличался от срока службы наимепсе долговечного в 40 раз. Таким образом, для достоверного определения срока службы деталей до разрушения от усталости необходимо испытать значительное число образцов Изложенные соображения относятся к деталям, напряжения в которых в наиболее слабом их месте превышают напряжения предела выносливости, а также к подшипникам качения, для которых наличие предела выносливости вообще не установлено Однако не следует думать, что конструкцию, работающую вне зоны усталостных разрушений (рис 10, интервал IV), достаточно испытать на одном образ це Каждый образец машины имеет свои индивиту Рис. 7. Кривая усталости ктопанных пружиц Рис 8 Кривая рассенвания долговечности деталей, разрушающихся от усталости в -- роликовые подшинники, б шариковые подшинники, в -- болть альные особенности, определяемые многими причи нами колебаниями в качестве деталей в пределах, допускаемых техническими условиями на изготовление, колебаниями зазоров в сопрягаемых деталях в результате того или иного сочетания допусков на изготовление, отклонениями от чертсжа при изготовлении, сборке и монтаже. В некоторых случаях все эти особенности способствуют получению благоприятных результатов испытаний, в некоторых случаях — наоборот При про ведении испытаний на одном образце резко сии жается вероятность выявления педостатков, которые неизбежно проявятся на группе образцов Крометого, явлениям износа также свечствение рассеннание, хотя и не в столь больших пределах, как при разрушении от усталости, по все же значительное, передко в 2-3 раза 1. Все эти обстоятельства были учтены при созданил вибрационных мельниц Сравинтельно быстрое ны явление и устранение и недостатьов конструкций а также технологии их изготовления были достигнуты благодаря организации испытаций в широкимасцитабах на значительном чисте образцов, причем конструирование каждей следующей модели прогвотилось на основе результатов испытации пре из учтей серии обычно 5 6 машин Общее ко при стаю образцов, построенных и испытаним перед вы пуском двух типов машии, показанных на рис 2—4, превышает 80 Все испытания долговечности и надежности проводились в условиях, близких к эксплуатационным Надежность образцов промышленной серни ви брационных мельниц М2(N)-1,5, т е их способиесть работать длительно и безотказно в условиях, белее тяжелых, чем эксплуатационные. была проверена Р В Кугель, Из опыта непытаний двигателей, «Вестипк машиностроения» № 10, 1952. Рис 9 Кривые рассенвания д этспечности при испытаниях на усталость листовых пружин а облугых дробью 6—не облугых дробью специальными испрерывными испытациями 4 образ цов на протяжении 1 000—1 200 час. процессе совершенствования конструкции основных деталей вибрационных мельниц срок их службы неуклонно возрастал, и по мере замены одинх опытных образцов другимя число циклов до разрушения деталей передвигалось из интервала // в интервал III и, наконец, в интервал IV усталости, схематически изображенной на рис. 10 Если в первой серии опытных образцов вибрационных мельинц разрушения корпусов в зоне приварки люков произошли посло 10—30 час. работы, то уже в следующей группе образцов в результате измене ния формы люков и устранения концентрации напряжений наблюдался только один случай возникновения трещины после 650 час. работы. Образцы корпусов промышленного типа работали более 6 000 час. (около 10° циклов) без признаков усталости. Испытания сварной конструкции корпуса вибратора на большой группе машин целиком подтвердили высказанные выше соображения о рассенвании поломки корпусов вибраторов первых опытных образнов происходили в пределах от 25 до 500 час (т. с рассенвание в 20 раз). Дальнейшее усовершенствование конструкции с устранением сварки корпуса вибратора полностью ликвидировало его поломки. Подомки сепараторов подшипников вибратора, происходившие на первых образцах после нескольких сотей часов работы, были устранены заменой шариковых подшипников со стальным штампованным сепаратором на сферические роляковые пот пипинки с чассивным сепаратором из латуни Образование заворов в цилиндрическом разъемном соетинелии корпуса вибратора с корпусом мелыницы пра прупиние соединений, происходившее в первых образцах, совершению прекратилось с переходом на конструкцию с конической затяжкой, при которой мазоры в соединении отсутствуют. Характерным примером развития конструкции нементов вибрационных мельниц являются упругистры. В первых моделях в качестве упругой опоры были применены заполненные газом резиновые нары, расположенные в два или три ряда по вертикали под динщем корпуса мельницы. Они хорошо аморти информали колебания, но в обычных условиях эксплуатации работали всего 30—50 час., после чего резина протиралась и шары теряли упругость В следующих моделях под диншем корпуса были Рис 10 Схематическое изображение крипой усталости — зона изделена циклической перегрузки, // — зона преддеру плиту усталостиму разрушений, // — зона из усталостиму разрушений, // — зоиз усталостиму разрушений и дижевыюй разоте, // — селине разрушения не розникают. установлены цилиндрические пружины. Конструкция получилась сложной, пружины были недоступны оскотру и смазке, кроме того, нередко возникали перекосы пружин при монтаже, что сокращало срок их службы. Не было также доступа к диншу корпуса. Вибрационная мельница промышленного типа M200 смонтирована на двух рядах небольших пружии, расположенных вдоль корпуса (рис. 2), при этом устранен их перекос, они доступны для регулярного осмотра и смазки; открыт доступ к днищу корпуса, в котором расположен выгрузочный люк В этон модели применены клапанные пружины автомобитыных двигатетей, подвергаемые обдувке дробыо для повышения усталостной прочности; высокое качество пружины в этом случае сочетается с изилен ее стримостыю. Проведенные в лабораторных условиях длительные веньтания вибрационных мельниц со стальными шарами и периодически заменяемым сухим песком в качестие балласта показали умеренный износ кор пусов Пови имому, снижению износа способству т интеньявный наклен внутренней поверхности кој пуса в результате высокочастотного воздействич мелюцих тел Миллионы ударов небольшой силы воспринимаемых внутренней поверхностью корпус уплотияют ее и несомнению оказывают положителное ее влияние на механические свойства. Однаво интересное явление пока не изучено В эксплуатационных условиях при непрорывом подаче измельчаемого материала следует «жид в иссколько большего изпоса, чем в лабораторюхх условиях при периодической замене балласта При помоле высокоабразивных материалов, на пример кварцевых песков, внутри вибрациоты об метышны устанавливаются сменные плитки, предокращнощие торды корпуса от износа и повышающие срок сто службы Гумо югические испытания каждой новой модели вибрационной мельницы состоят из двух основных этапов первый — определение оптимального режима измельчения, те нанвыгоднейшей амплитуды колебания корпуса мельницы, количества загружаемог м. гериала и мелющих тел, их размера, выбор мегода измельчения (мокрого или сухого, периоди- Рис 11 Зависимость уаслыной поверхности (О) и остатков на ситах 0060 и (км9 (R_{60} и R_{60}) от времени измельчения вольского кварцевего песка на вибрационной кельнице М200-3. Рис. 12 Зависимость удельной поверхности (О) и остатков на ситах 0060 и 0088 ($R_{\rm 50}$ и $R_{\rm 50}$) от премени измельчения смеси (известь, известияк, гипс) на вибрационной мельнице M200-1,5 ческого или непрерывного, «на проход» или в замкнутом цикле, с классификацией или без нее), выбор способа загрузки и выгрузки; второй — определение производительности и энергозатрат при измельчении данного материала до заданной дисперсности при каждом исследуемом режиме Объем технологических испытаний обычно весьма велик, так как для получения достоверных данных приходится проводить большое число опытов Кроме того, опыты производятся с учетом неоднородности и с тельчаемых материалов (например, песков разлачной влажности, дисперсности и с различным содержанием глины, извести из разных карьеров и т д). В ряде случаов объем испытаний возрастает из-за отсутствия у промышленности точных даничх о требуемой оптимальной дисперсности. Это об няется тем, что до настоящего времени возможность получения различных тонкодисперсных материалов быта весьма ограничена и, естествен по, достаточный опыт их применения не накоплен В результате испытаний построены кривые, характеризующие дисперсность измельчаемого продукта в зависимости от длительности измельчении (рис. 11 и 12) и от энергозатрат (рис 13) при Рис 13. Зависимость удельной поверхности (O) и остатков на ситих 0088 и 0060 ($R_{\rm th}$ и $R_{\rm to}$) от энергозатрат на измельчение вольского кварцевого песка на вибрационной мельнице M200-3 1/1000 mm # Ultra Fine Grinding of Materials down to 1/1000 mm. Up to recently numerous materials resisted desintegration down to impalpable sizes even in the best of grinding-machines available. This meant a check to the development in quality of the materials concerned and the final products made of these In this respect the effectiveness of the VIBRATOM oscillating-mill (patented) means a revolutionary improvement. The desintegration is so thorough that the particles can no longer be felt and cannot be sieved either. It is, therefore possible now to improve the materials and the products made of them and to raise their quality. This means better aleability! The grinding process is not only highly effective but also very economical. The effectiveness of fine-grinding processes attained hitherto has been raised to a multiple by the VIBRATOM oscillating-mill. Its advantages result from the particular features. If construction explained concisely in the right hand margin. The material to be ground generally should not be larger than 0.5 mm. (for certain materials the size is not so critical). Grinding takes place dry or wet. The contents of the grinding vessel being mixed automatically, the uniformity of the resultant product is ensured. VIBRATOM oscillating-mills are used for the mechanical decomposition of raw materials semi-manufactures and waste matter and for grinding paints. I acquers glazes quartz powder, clay, ceramic cosmetic products talcum sulphur gypsum graphite chalk rubber saw dust, raw materials for white metal, stone- and brown coal dust drugs and high quality foodstuffs of every nature. The field of application is constantly widening. Mixing processes too can be carried out excellently by means of the VIBRATOM mill. VIBRATOM oscillating-mills are built in various sizes as shown on the reverse Our research department is at your disposal for any grinding tests you may wish to have carried out on your materials. We shall be pleased to receive your inquiries for our various types of mills N.V.TEMA · THE HAGUE (HOLLAND) · 1 Nassaulaan #### **HOW DOES IT WORK?** The-VIBRATOM mill is used for grinding a certain quantity at a time. By means of a motor driven (n == 1450/1000) unbalanced spindle the grinding-vessel is set vibrating in its suspension springs. As a result of this the steel or porcelain grinding balls (a abt 12 mm.) in the vessel start beating on one another and revolving separately and as a whole, thereby describing fixed curved trajectories, adjusted in accordance with carefully computed laws. The rapid beating, but especially the high frictional effect of every separate ball pulverise the material between every two balls in the most efficacious way. VIBRATOM Oscillating-Mills Left hand top figure 6-liters mill with rotation gear Right hand top figure small industrial mill or larger laborator, type for 20 liters of grinding material (4 porcelain or steel containers of 5 liters each) Left hand, second figure small industrial mill for 50 liters of grinding material Right hand, second figure large industrial mill with tippin container for 250 liters of grinding material ### Vibratom Oscillating-Mills for Laboratories, with 2 porcelain or steel containers of 0.3 liters effective capacity each. We especially recommend the laboratory oscillating-mill of 0 6 liters effective capacity as shown on the right making it possible for every one to carry out any kind of grinding-test desired. The data obtained from tests with this mill are very valuable thorough research having proved that they indicate with a 90 per cent's certainty what results may be expected when using any of our larger types of mills. Figure on the right : 0 6 liters oscillating-mill for laboratory purposes N. V. TEMA . THE HAGILE Declassified in Part - Sanitized Copy Approved for Release 2014/06/20 : CIA-RDP80-00809A000100140012-7 #### VIBRATORY GRINDING MILLS AND THEIR TESTING (Translation of: M. Ya. Sapozhnikov and R. V. Kugel (Candidates of technical sciences). Vibratsionnye mel'nitsy i ikh ispytaniya. Mekhanizatsiya Stroitel'stva (8):3-8, 1955) Vibratory grinding mills are machines remarkably suitable for purposes of fine grinding; they will certainly gain wide distribution in the nation's economy in all cases where there is a demand for one or the other of the finely dispersed materials. The two main fields in which vibratory grinding machines are used with success are the manufacture of building materials and that of structural parts. Investigations made at the S.K.B. (1) plant of the Department for the Production of Building Materials of the Union of Soviet Socialist Republics, as well as at other institutions, have shown that fine grinding techniques open possibilities for manufacturing high-quality binding materials from a great variety of local raw materials (such as lime, sand, slag, ashes, hearth residues, etc.); these investigations have also demonstrated the increased strength of structural parts made of finely ground materials. Thus, to cite a few examples, if sand used in manufacturing silicate antoclave parts is submitted to fine grinding, the mechanical strength of the product is thereby increased several times; finely ground sand and lime may be used as a substitute for cement in slate manufacture; additional vibratory grinding of cement destined for reinforced concrete both increases its activity and accelerates hardening, etc. The outside view and construction of vibratory grinding mill type M200 are shown in Figs. 1 and 2. The following are the main structural members of the machine: cylindrical body 1, vibrator 2, elastic suspension consisting of springs 3, supporting frame 4, electric motor 5, and elastic sleeve 6 connecting the shaft of the Translator's note. The meaning of this abbreviation is unknown to me. It seems to indicate an institution for developing machines for the building industry. vibrator with the electric motor. The vibrator consists of 1) two pressed-on pipes between which circulates water that cools the bearings, and 2) an unbalanced shaft, resting on those those bearings and made either in one piece as in vibratory grinding mill M200-1.5, or in several pieces as in vibratory grinding mill M200-3. The rotation of Fig. 1. Diagram of vibratory grinding mill. a = model M200-1.5. (Red mark) b = model M200-3; 1 = body; 2 = vibrator; 3 = springs of elastic suspension; 4 = supporting frame; 5 = electric motor; 6 = elastic coupling sleeve. (In the illustration: red mark c = longitudinal section; red mark d = transverse section.) the unbalanced shaft generates vibrations in the body of the machine, vibrations that form a closed trajectory curve and have a frequency corresponding to the number of revolutions per second, viz. a frequency of about 25 1500 C corresponding mill M200-1.5 and a frequency of 50 c/sec in model M200-3. 3 corresponding to the second model M200-3. Fig. 2. General view of vibratory grinding mill M200. An example of more recent models of vibratory mills, in which the body rests on four springs only, is shown in Fig. 3. In these models the frame is lighter than in the former models and has a n-shaped plan which permits easy access to all parts of the body and, moreover, renders more convenient the unloading of the machine. ^{*}Translator's note. In this and the following illustrations Russian letters and Russian captions within the illustration are marked by me in red on the photostat; their meaning is then given in the translation. Vibratory grinding mill M10, shown in Fig. 4, has a working capacity of 10 dm³; it has been devised for cases when relatively small amounts of a finely-dispersed material are required. Table 1 gives the technical characteristics of the various models of vibrating grinding machines, developed at the S.K.B. plant of the Department for the Production of Building Materials of the Union of Soviet Social St Republics. The efficiency of vibrating granding mills (One part of the frame is removed.) varies within wide limits and depends on the mode of the grinding procedure, the properties of the material and the desired degree of fineness of the product. Fig. 3. Vibrating grinding mill type Fig. 4. Vibratory grinding mill M10, laboratory type. 1 = body; 2 = unbalanced member of the vibrator; 3 = collars of the body support, in which the latter can be tipped for unloading of the product; 4 = guard; 5 = elastic connecting sleeve; 6 = electric motor; 7 = spring of the elastic support; 8 = frame; 9 = base; 10 = inlet and outlet of cooling water. Vibratory granding machines can be used for both dry and wet granding. Dry granding is especially successfully effected with the "compound" vibro-granding equipment shown - 4 - Table 1. Technical characteristics of vibratory grinding machines. | | Models | | | | |----------------------------------------------|------------------|-------------|----------|--| | Characteristics | M10 | M200-1.5 | M200-3 | | | Volume of body in dm ³ | 10 | 200 | 200 | | | Frequency, vibrations per min. | 3000 | 1500 | 3000 | | | Amplitude of vibrations in mm | 3 = 0.118 | " 3 = 0.118 | 2 0 2 19 | | | Moment of unbalancein kg-cm | 13 | 140-175 | 65 | | | Weight of grinding bodies in kg: | | | | | | steel balls or rollers | 36 ∹ <i>ප</i> ර* | 740 1633th | 740 | | | porcelain balls | 11 | 240 | 240 | | | Power of electric motor in kW | 4.5 | 14 | 20 | | | Total weight (without grinding bodies) in kg | 185 | 700 | 720 | | | Overall dimensions in mm: | | | | | | length | 1070 | 1980 | 1980 | | | width | 450 | 980 | 980 | | | height (including wood base) | 770 | 1360 | 1360 | | in Fig. 5. Materials destined for grinding are loaded into a double feeding bin 1 and, after passing through batchers 2, they enter, now in the desired proportion, into the grinding mill 3 which is separated by a partition into two compartments. High-pressure fan 4 blows air through conduit 7 into the grinding mill; here the air lifts up a mixture of more or less finely ground material from the grinding bodies as they appear on the surface of the charge in the course of their circulation around the vibra- tor. Then the air stream carrying the ground ma- terial passes through a separator 5, where fine grains are separated and finally deposited in the cyclone $\boldsymbol{6}$ while coarser grains leave separator $\boldsymbol{5}$ to return to the mill for additional grinding. The stream velocity in the system is regulated with the aid of Fig. 5. Diagram of the compound vibro-grinding equipment No. 3 S.K.B. 1 = feeding bins (A and B); 2 = batcher driven mechanically; 3 = vibratory grinding mill type M200; 4 = high-pressure fan; 5 = pneumatic separator; 6 = cyclone with an intermediary bin and oscillator; 7 = conduit system In the illustration: red mark C = initial material; red mark D = final product a throttle valve. With materials like dry quartz sand, or mixtures of lime and sand or of lime and limestone, the hourly output of such an equipment, using mill model M200-1.5, is 225-300 kg of product having a specific surface equal to 4,000-4,500 cm²/g (measured by Tovarov's method) and leaving a remainder not exceeding 2-5% on a screen with 10,000 holes per cm². Another variation of a compound vibratory grinding equipment is shown in Fig. 6. The material, after having been more or less finely ground, is not blown away from the Fig. 6. Diagram of the compound vibro-grinding equipment No. 2 S.K.B. 1 = vibratory grinding mill type M200; 2 = separator; 3 = cyclone; 4 = fan; 5 = feeding bin; 6 = batcher; 7 = elevator; 8 = bin of the elevator. In the illustration; Red mark a = initial material; Red mark b = suspension of initial material in air; Red mark c = coarse fraction; Red mark d = fine fraction; Red mark e = final product; Red mark f = partial removal of air; Red mark g = additional air. surface of the balls, as in the preceding case, but drops down into the air line where it is lifted up by the stream of air and transferred into the separator. In certain cases, as e.g. in additional grinding of cement, a continuous "creeping" procedure with no pneumatic fractionation is found to be more convenient. Materials to be ground are fed in proper proportions into the upper hole placed at one end of the machine and, in the form of the final product at the lower hole placed at the opposite end. All of the models of grinding mills were submitted to prolonged tests whose purpose was to investigate the behavior of the following parameters: main structural and functional characteristics (amplitude of vibrations, power required, circulation of grinding bodies, weight of structural members, etc.), technological versatility of the vibratory grinding unit as expressed by its capacity of grinding various materials under various conditions, its span of life, dependability, convenience in handling and supervising, thermal stresses, and readiness to undergo repair. In the remaining sections of this paper some data will be given concerning the most elaborate of the tests of grinding mills, viz. those of their life span and of their functional characteristics, as defined above. Unlike machines where stresses in single members can be reduced by increasing the latter's dimensions, vibratory grinding mills admit only very limited increases in section areas and weights of its parts. This is due to the fact that every increase in the masses of vibrating parts is accompanied by an increase in the required driving energy and, consequently, by a decrease in the machine's efficiency. In analysing the possible causes of failure of the principal members and of other parts of a vibratory grinding mill, one naturally thinks of the fatigue phenomena that must be accumulating in the machine's body, in the vibrator, in the latter's bearings, and in the springs of the elastic suspension system. As a rule, fatigue destructions of a given body are localized either in its weakest points statistically distributed over the whole volume, or in zones of concentrated stresses attributable to the body's shape, sudden variations of cross-section areas, surface injuries, and internal flaws. It should be borne in mind that experimental measurements of stresses in a given mechanical part may not lead to results identical with those obtained from fatigue tests, since stress measurements furnish data which characterize the whole volume of the part examined whereas results of fatigue tests are related to the weakest point in the material or in the structure. The dependence of the lifetime of a part, until its destruction by fatigue, on the stress is expressed by the equation $$N = (A/\sigma)^m$$ where N is the number of cycles until destruction, σ is the stress, A is a constant coefficient, and m is an exponent measuring the slope of the fatigue curve drawn in logarithmic coordinates. Owing to the exponential nature of the above dependence of the lifetime on the stresses, small stress changes will frequently produce considerable changes in the lifetime. An example is seen in the fatigue curve of valve springs shown in Fig. 7: to a 4% decrease in stress there corresponds a 10-fold increase in the number of cycles until destruction. For these reasons, a characteristic feature of all fatigue tests is a considerable dispersion of the results obtained. As a numerical illustration of this statement we give Fig. 7. Fatigue curve of valve springs. Abscissas: number of cycles until destruction; Ordinates: stress in % of the limit stress. Fig. 8. Dispersion curves of lifetime characteristics of mechanical parts undergoing fatigue destruction. a = roller bearings; (Red mark) b = ball bearings; (Red mark) c = bolts; Abscissas: lifetime in % of the average lifetime; Ordinates: number of parts which remained undestroyed in % of the total number of parts in Figs. 8 and 9 typical dispersion curves of the lifetime characteristics of some mechanical pieces used in vibratory grinding machines, viz. ball bearings, roller bearings, springs and bolts. As seen from these examples, individual differences are great: lifetimes several times as long in some specimens as they are in other specimens represent the usual picture of the situation; and if limits of the dispersion were considered, the differences would be larger still. Thus, in a lot of about 30 highquality ball bearings examined with a testing machine, the longest lifetime was found to be 40 times as long as the shortest one. This shows that reliable determinations of lifetimes of mechanical parts until fatigue destruction require tests of a considerable number of specimens. Fig. 9. Dispersion curves of lifetime ar characteristics, plotted from fatigue tests of flat springs. of a = springs having been submitted to the strengthening action of a stream of small shot; (Red mark) b = springs that have not been so treated; Abscissas: number of load cycles in thousands; Ordinates: number of pieces which remained undestroyed in % of the total number of pieces tested. The above considerations concern pieces in which stresses localized in their weakest point exceed the limiting resistance value. They also concern all bearings involving rolling elements, for which no such limiting resistance values have yet been determined. However, given a structure working under conditions where fatigue destructions do not occur (Fig. 10, Zone IV), it would be erroneous to presume that in such a case a test involving one specimen only would be sufficient. Each specimen of a machine element has its own individual peculiarities determined by a number of different causes: within accepted limits, manufactured pieces of a given kind are necessarily different; fits between connected pieces are also different within prescribed limits; there occur deviations from the blueprint both in the manufacture of the pieces and their assembly. Fig. 10. Diagram of a fatigue curve. I. zone of breaking due to cyclic overloading; II. zone of early fatigue destructions; III. Zone of fatigue destructions occuring after long periods of work; IV. fatigue destructions do not occur; Abscissas: number of cycles until breaking; Ordinates: alternating stresses. All these peculiarities may so combine as to furnish a favorable test result in one case and an unfavorable one in another. Thus, a single test involving one specimen only will considerably lower the probability of finding defects which necessarily would have become obvious in tests with several specimens. Furthermore, it should be borne in mind that phenomena of wear also present a dispersion of individual results; although not as strong as in fatigue phenomena, this dispersion is important, frequently showing two-fold and three-fold deviations¹⁾. All the above considerations were taken into account during the development of our vibratory grinding machines. By organizing large scale testing programs, involving considerable numbers of specimens, we were able to discover and to remove rather rapidly the various defects of construction or of manufacture of parts. The design of any subsequent model was based on results of tests performed on its predecessor, which was represented by several specimens, usually 5 or 6 machines. More than 80 machines were tested in this way before the two types illustrated in Figs. 2-4 were offered for distribution. Life span measurements and reliability tests were carried out under conditions approaching those of actual service. Reliability is defined as the capacity of furnishing prolonged and regular work under more severe conditions than those prevailing in actual service. In the case of our i) R.V. Kugel, Some knowledge gained from engine testing. Vestnik Mashinostroeniya no. 10, 1952. type M200-1.5, now offered for distribution, the reliability was determined in a special series of continuous tests of 4 machines during 1000-1200 hours. In the course of continuous improving of the construction of the principal members forming our vibratory grinding mills, and in the process of substituting new models of machines for older ones, we observed a continuous increase in the numbers of cycles producing destruction of one or another of the principal members; in fatigue curves similar to that shown diagrammatically in Fig. 10, those numbers of cycles until destruction gradually changed their position, in the course of improvement, from zone II to zone III and finally to zone IV. Whereas in our first series of experimental specimens of vibratory grinding machines destruction of machine bodies near the zone of welding of the hole flanges occured after 10-30 hours of work, in the second series of specimens, in which an improved shape of holes has been adopted and concentrated stresses avoided, only one case of fissuring was observed, and that one after 650 hours of work. As to machines of the type offered for industrial use, their bodies, in specimens tested, worked for over 6,000 hours (i.e. about 10° cycles) with no signs of fatigue. Considerations concerning dispersion of results, which have been discussed above, are well illustrated by the results we obtained in testing vibrator bodies, of welded construction, belonging to a large series of experimental machines. In the first group of machines studied breaking of vibrator bodies occured after working periods ranging from 25 to 500 hours (i.e. with a 20-fold dispersion). Later on, after a new improved construction involving no welding had been introduced, no breaking of vibrator bodies ever occured. In our first group of experimental machines bearing separators broke after a few hundred hours of work; these accidents were entirely eliminated by replacing stamped steel separators in ball bearings by thick brass separators in spherical roll- er bearings. The formation of loose fits in detachable cylindrical connections between the vibrator body and the grinding-rachine body, loose fits that led to the destruction of the connections, frequently occurred in the first group of machines tested; this defect was definitely removed after the adoption of a conical press-on connection in which loose fits cannot form. Elastic supports of vibratory grinding mills furnish a typical example of changes and transformations undergone by the structural elements of these machines in the course of our developmental work. In the early models the role of elastic supports was played by rubber balls filled with gas and arranged under the bottom of the machine body in vertical groups of two or three balls. Although quite efficient in damping vibrations, these rubber balls, after only 30-50 hours of service under the usual working conditions, were worn out and devoid of elasticity. Accordingly, cylindrical springs were adopted in subsequent models. The result, however, was not satisfactory: the structure was complicated, the springs were not accessible for inspection and lubrication; not unfrequently the springs were tilted in assembly, a circumstance that reduced their life-span; moreover, the bottom of the machine body was entirely inaccessible. The vibratory grinding machine type M200, now offered for industrial use, rests on two rows of small springs arranged along the machine body (see Fig. 2). There is no tilting in assembly; the springs are accessible to inspection and lubrication; the access to the machine bottom and, consequently, to the unloading hole, is open and convenient. Springs used in this type of machine are the conventional valve springs of automobile engines which, with a view to increasing their fatigue strength; have been submitted to the action of a stream of small shot; these springs have the advantage of combining high quality with low cost. The wear of the body of our vibratory grinding machines is moderate. We verified this point in a series of prolonged tests of machines filled with steel balls and a periodically changed load of dry sand. It may be surmised that the resistance of the body to wear is increased by the strengthening effect of the high frequency hammering of the inner surface by the grinding bodies. No doubt, under the impact of millions of low strength blows, the inner surface layers of the body's wall become denser, a circumstance that certainly improves its mechanical properties. However, this interesting phenomenon has not yet been investigated. In actual service, with continuous feeding of the initial material, the wear of the body will probably be somewhat higher than in our laboratory experiments in which, as said above, the sand loads were periodically replaced by fresh ones. Where highly abrasive materials such as quartz sands are ground, it is recommended that exchangeable shields be placed inside the vibratory mill body so as to protect the body ends from wear and to prolong their service. We shall discuss now the second part of our testing program, viz. tests of what we called above the machine's functional characteristics. For every new model of vibratory grinding mill those tests comprised two main stages. The purpose of the first stage was to establish the optimum "regime" of grinding, composed of such characteristics as the optimum amplitude of vibration of the machine body, amount of material loaded, quantity and size of grinding bodies, the most advantageous method of grinding (whether wet or dry, periodical or continuous, along a "creeping" trajectory or in closed cycle, with or without fractionation), and the most appropriate way of loading and unloading. The second stage consisted of measurements of the machine's efficiency and of the outside energy consumed in grinding a given material to a given degree of dispersion for each of the grinding regimes examined. The volume of all these different tests of functional characteristics was usually quite large, because reliable data can be obtained only at the price of repeated experimenting. Furthermore, the fact that materials destined for grinding are not identical should be taken into consideration in experiments of that kind (thus, sands may be of different degrees of humidity or of different degrees of dispersion, or they may differ in their clay content; again, limes obtained from limestones of different quarries may differ in properties, etc.). In a number of cases, tests must be multiplied because the particular industry which uses a given material does not possess accurate data concerning optimum dispersion. This situation is due to the fact that, until recently, possibilities of preparing various finely dispersed materials were very limited, and no sufficient experience in their application has yet accumulated. As a result of these tests, curves have been plotted expressing the degree of dispersion of a ground product as a function of the duration of the grinding procedure (Fig. 11 and 12) or as a function of energy consumed (Fig. 13) for each given regime of grinding. A group of such curves, plotted for different regimes of grinding and for different materials, form the basis for appraising the functional worth of a given grinding machine. All that has been achieved during the relatively short period of time of developing vibratory grinding mills should, of course, be considered as a first stage only in introducing an entirely new method of fine grinding technology for the various materials employed in the building industry We are now engaged in a long series of tests of new models of vibratory grinding equipment of large dimensions. Simultaneously, a techno- ²⁾It should be noted that curves of Figs. 11-13 illustrate the least efficient among the grinding methods, viz. that of periodically worked loads. Fig. 11. Specific surface (0) and fractions remaining on screens Nos. 0060 and 0088 (R_{60} and R_{88}) as a function of the duration of grinding of quartz sand (from Volsk quarries) in vibratory grinding machine M200-3. Abscissas: duration of grinding in min.; Ordinates 1) inner scale: specific surface (according to Tovarov's method) in cm²/g. 2) outer scale: fractions remaining on screens Nos. 0088 and 0060 in %. In the illustration: Red mark a = specific surface; Red mark b = fractions remaining on screens, R₅₀ and R₅₈; Red mark c = Grinding Characteristics: Load: steel balls 16-20 mm diameter - 740 kg quartz sand -- 75 kg; power applied ---- 31 kW; amplitude ---- about 2 mm. Fig. 12. Specific surface (0) and fractions remaining on screens Nos. 0060 and 0088 (Rec and R₈₈) as a function of duration of grinding of a mixture (consisting of lime, limestone and gypsum) in vibratory grinding machine M200-1.5. Abscissas: duration of grinding in min; Ordinates: 1) inner scale: specific surface (according to Tovarov's method) in cm²/g. 2) outer scale: fractions remaining on screens Nos. 0060 and 0088 in %. In the illustration: Red mark a + specific surface; Red mark b = fractions remaining on screen, Ree and Res; Red mark c = Grinding Characteristics: Load: steel balls 12-20 mm diameter 740 kg; mixture --- 66 kg; power applied ----13 kW; amplitude ---- about 3 mm - 15 - Fig. 13. Specific surface (0) and fractions remaining on screens Nos. 0088 and 0060 (Rgs and Rgo) as a function of energy consumed in grinding quartz sand (from Volsk quarries) in vibrating grinding machine M200-3. Abscissas: energy consumed, in kwh/t. Ordinates: 1) inner scale: specific surface (according to Tovarov's method) in cm2/g. 2) outer scale: fractions remaining on screens Nos. 0088 and 0060 in %. In the illustration: Red mark a = specific surface; Red mark b = fractions remaining on screens, Reo and R23; Red mark c= Grinding Characteristics: Load: steel balls 16-20 mm diameter -- 740 kg; quarts and --- 75 kg; power applied --- 31 kW; amplitude --- about 2 mm. logical search is being done with a view to determining possible fields of application and optimum ways of industrial utilization of vibratory grinding equipment. Together with the industrial experience already gained with vibratory mills of type M200 model 1955, these new investigations will contribute to furthering the progress of the technology of fine grinding and of applications of applications of finely ground products in industry. 3/27/56 ps